Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 221: 112468, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34198191

RESUMO

The study shows how microalgae biofilm formation and antioxidant responses to the production of reactive oxygen species (ROS) is alter by the presences of Lemna minor L., Chlorella vulgaris, and Aphanizomenon flos-aquae. The study involves the cultivation of the biofilm of Chlorella vulgaris and Aphanizomenon flos-aquae in three bioreactors. The condition of growth for the biofilm formation was varied across the three bioreactors to enable the dominance Chlorella vulgaris and Aphanizomenon flos-aquae in one of the bioreactors. Lemna minor L. was also introduce into one of the bioreactors to determine its effect on the biofilm formation. The result obtained shows that C. vulgaris and A. flos-aquae dominate the biofilm, resulting in a high level of H2O2 and O2- (H2O2 was 0.122 ± 0.052 and 0.183 ± 0.108 mmol/L in C. vulgaris and A. flos-aquae, respectively, and O2- was 0.261 ± 0.039 and 0.251 ± 0.148 mmol/L in C. vulgaris and A. flos-aquae, respectively). The study also revealed that the presence of L. minor L. tend to reduce the oxidative stress to the biofilm leading to low production of ROS (H2O2 was 0.086 ± 0.027 and 0.089 ± 0.045 mmol/L in C. vulgaris and A. flos-aquae respectively, and O2- was 0.185 ± 0.044 and 0.161 ± 0.065 mmol/L in C. vulgaris and A. flos-aquae respectively). The variation in the ability of the biofilm of C. vulgaris and A. flos-aquae to respond via chlorophyll, carotenoid, flavonoid, anthocyanin, superoxide dismutase, peroxidase, catalase, glutathione reductase activities, antioxidant reducing power, phosphomolybdate activity, DPPH reduction activity, H2O2 scavenging activity, lipid content and organic carbon also supports the fact that the presence of biomass of microalgae and aquatic macrophytes tend to affect the process of microalgae biofilm formation and the ability of the biofilm to produce antioxidant. This high nutrient utilization leads to the production of biomass which can be used for biofuel production and other biotechnological products.


Assuntos
Aphanizomenon/fisiologia , Araceae/fisiologia , Biofilmes , Chlorella vulgaris/fisiologia , Microalgas/fisiologia , Antioxidantes/farmacologia , Biofilmes/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio
2.
Int J Phytoremediation ; 23(11): 1175-1183, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33563031

RESUMO

This study aimed at studying the phycoremediation of petroleum-contaminated water using microalgae biofilm cultured in nutrient-rich water. Microalgae biofilm was grown in a photobioreactor containing water rich in calcium nitrate, manganese chloride, sodium potassium tartrate, calcium phosphate, and ammonium sulfate. Petroleum contaminated water was poured into a photobioreactor, and the substrate containing microalgae biofilm was inserted into the photobioreactor and allowed for eight weeks for biofilm formation. Physicochemical parameters (pH, turbidity, conductivity, sulfate, alkalinity, chloride, TDS, TSS, nitrate, salinity, iron, potassium, phosphate, chlorine, chromium, magnesium, zinc, COD, BOD, and total petroleum hydrocarbon (TPH) of the petroleum contaminated water before and after treatment were determined. The microalgae biofilm used for the treatment was characterized before and after treatment using a Scanning Electron Microscope, X-Ray Fluorescence, and Fourier-transform infrared spectroscopy. The phytochemical constituent of the microalgae biofilm was also determined before and after treatment of the petroleum-contaminated water. The result obtained shows highest removal efficiency of physicochemical parameters (turbidity (81%), conductivity (51.2), sulfate (17.5%), alkalinity 28.4%), chloride (14.6%), TDS (7.9), TSS (26%), nitrate (33%), salinity (23.4), iron (16%), potassium (22%), phosphate (28.2%), chlorine (14%), chromium (13.6%), magnesium (30.3%), zinc (40.5%), COD (8%), BOD (16.7%) and total petroleum hydrocarbon (15%)). The microalgae's characterization shows microalgae biofilm's ability to adsorb pollutants in petroleum-contaminated water due to the presence of microspores and larger surface area of the cells of the microalgae forming the biofilm or due to the absorption efficiency of the extracellular polymeric substances (EPS). The analysis of the microalgae biofilm's phytochemical parameters shows the involvement of the chemicals components in pollutants degradation and antioxidant response of the microalgae to counteract the oxidative effect resulting from the exposure of the microalgae to the contaminated water. NOVELTY STATEMENT This is the first study that attempts the phycoremediation of petroleum contaminated water using microalgae biofilm. The reduction efficiency of the parameters treated in this study is very low compared to that reported in the literature but increases with the retention day. This low reduction efficiency is attributed to the slow assimilation of organic and inorganic pollutants due to the initial growth condition. This study is the first to re-affirm that microalgae biofilm can phycoremediate petroleum-contaminated water by adsorption and assimilation due to the presence of microspores and a larger surface area the cells of the microalgae forming the biofilm or the extracellular polymetric surface covering the biofilm. Several studies have reported that phytochemicals present in microalgae play an antioxidant response role to prevent the microalgae from oxidative damage resulting from water pollution. However, this study is the first to strongly link phytochemicals to the enhancement of pollutants degradation and adsorption by microalgae biofilm.


Assuntos
Microalgas , Petróleo , Biodegradação Ambiental , Biofilmes , Nutrientes , Água , Poluição da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...